AMPLIFIER INSERTION MODULE WITH DSP TECHNOLOGY **AKB-400DSP** Best.-Nr. 32.0010 **INSTRUCTION MANUAL** CE # **Table of contents** | Product description | 3 | |-----------------------------------------------------|----| | Features | 3 | | Applications | 3 | | Connections | 4 | | System information | 6 | | Description | | | Audio performance data | 6 | | Hardware Architecture | 7 | | Controllers | 7 | | Clip limiter | 7 | | Product overview | 8 | | Hardware part | 8 | | Software installation | 9 | | Control panel | 9 | | Filter design | 10 | | Graph Area | 11 | | Filter Definition Area | 11 | | Settings Window | 11 | | Work flow | 11 | | Measurement | 11 | | Designing filters | 13 | | Download | 14 | | Firmware update | 14 | | Safety precautions | 15 | | Instructions For Installation | | | Recommended Operating Conditions for the AKB-400DSP | | | General Performance data for the AKB-400DSP | 16 | | Mains selection | 17 | | Technical data | 18 | # **Product description** #### **Features** - 2x amplifier - Switch mode power supply - Balanced audio in - Balanced audio through loop - Two channel active filtering Fully user-configurable filters - Firmware update by USB - DSP supply voltage dependant clip limiter ## **Applications** This module can be used for the following setups: - Active 2-channel system - Active power sub-woofer And with 2 modules it is also possible to set up a 3-channel system with one module for the separate Subwoofer, and a second module for the top in a 2-channel system. ## **Connections** Figure 1 Overview of the connections on the front of the AKB-400DSP | | Function | |----|----------------------| | 1 | USB input | | 2 | Select button | | 3 | Preset LED's | | 4 | Clip detect LED | | 5 | Analogue Link | | 6 | Analogue Audio Input | | 10 | Power input | | 11 | Power output | | 12 | On/Off switch | Figure 2 Overview of the connections on the back of the AKB-400DSP | | Function | |---|----------------| | 1 | J16, Speaker - | | 2 | J14, Speaker + | | 3 | J17, Speaker - | | 4 | J15, Speaker + | ^{*} For bridged mode use J14 and J15. Signal on J14 is inverted Figure 3 | | Function | |---|-------------------------------------------------------------------------------------------------------------------------------| | 1 | Jumpers placed is normal function | | | Jumpers not placed lowers High channel gain with 10dB, this must be corrected in "Filter design" software under Tools Options | # **System information** Figure 4: Block diagram Two-channel active amplifier with DSP filter control. #### Description The AKB-400DSP is a plate amp for use in powered speaker systems. As an active speaker controller, a AKB-400DSP can form the basis of a powerful active two-way monitor. Figure 4 shows the audio path of the AKB-400DSP The module has two 400Watt UcD modules implemented. The supply voltage is provided by a Switched Mode Power Supply module. A PC controls the AKB-400DSP through the USB port. This connection is used to upload the configuration and filter settings. It will also be possible to update the firmware through USB. ## Audio performance data MBW=20kHz, unless otherwise noted. All filters set to unity. Noise levels unweighted. | Item | Symbol | Min | Тур | Max | Unit | Notes | |----------------------------|--------|------------------------------------------|-----|----------------------|------|-----------------| | Input level | Vin | | +18 | | dBu | Vin max | | Output level | LS1 | | | 400* | W | Into 4 Ohms | | | LS2 | | | 400* | W | Into 4 Ohms | | Signal/Noise | SNR | | 101 | | dB | ADC | | | | | 107 | | dB | DAC | | Total harmonic distor- | THD+N | | -90 | | dB | Without UcD400 | | tion+Noise | | | | | | | | DSP sampling rate | Fs | | 48 | | kHz | | | Delay per channel | | 0 | 0 | 15000 | us | Set in software | | Supported digital sampling | Fs | 32, 44.1, 48, 88.2, 96, kHz All input ra | | All input rates con- | | | | rates | 192 | | | verted to 48kHz | |------------------|-----|------|----|-----------------| | Gain | | +16 | dB | volume at OdB | | Analogue Latency | | 1,12 | ms | | | AES Latency | | 3,58 | ms | | ^{*} Note: Total power for the AKB-400DSP is limited to 500Watts total #### **Hardware Architecture** The standard version of the AKB-400DSP has an analogue balanced audio input. This analogue signal is converted to digital, processed by the DSP and then converted back to analogue. A microcontroller controls the DSP and communicates with the PC and can set the presets. An unbalanced source may also be applied, this signal is divided over the two input DAC's to get better performance. #### Controllers The AKB-400DSP can only be controlled through USB. When the module is powered on it will automatically start up with the last settings. All setting, like volume and preset, are stored after a change is made. ## Clip limiter The AKB-400DSP has a build in clip protection. The module measures the supply voltage and uses this value for the limiter. Figure 5 shows the response graph of the limiter. The hold time is fixed to 100ms and the decay is set to 100dB/s. Figure 5 When the limiter for either channel is active the Clip led will be lit. #### Thermal protection All modules have a build-in thermal protection. This protection lowers the output gain 1 dB per degree starting at plate temperature of 70 degrees Celsius. The outputs will be completely muted when the temperature rises over 90 degrees. ## **Product overview** Before you can use the AKB-400DSP in your particular setup, you first have to set the right settings. This is done by pc software, called DSP filter design. Please do not connect any speakers to your system yet! ## Hardware part The AKB-400DSP can be used in 2 ways, as a 2-channel setup or as a one channel bridged version for more power. This is selected in software. The module can store up to 4 presets. A preset holds the complete filter-settings of both channels. By this the user is able to make different system settings for its speakers, for example for different rooms and setups. All of the presets are empty from factory setup, therefore the filters must be downloaded first. See section "examples". * note that for bridged mode both LS+ connections must be used, see section **Connections** for more information Figure 6 #### Software installation System requirements: - Pentium class or higher - 64MB RAM - USB1.0 or higher Tested on Windows XP, Vista, Windows 7 and Windows 8. All files are compressed in the setup.zip file. This zip file contains 1 DLL file for communication and an .EXE file. - 1. Unzip the setup.zip file on your hard disk - 2. Open the "filter design.EXE" by double clicking the file #### Control panel Now the program is ready for use. You will see the following window, called the control panel. Figure 7 When the program is running connect your module to your pc by the USB cable. Windows will automatically detect and install the HID-device. When the installation is done the connected the connection light will turn green. You can also manually make a connection by the "connect" button, on the bottom right of the control panel. Now you may adapt the settings of the module real time through USB. On the left side in the control panel you see the Force input and active input groups. This shows you the settings of the audio inputs and lets you control these inputs (only for digital version). Audio can be provided analogue and digital. The selection of any of these inputs can be automatic, "auto detect". This means that when any of the inputs is presented there will be switched to this channel automatically. This is done by setting the analogue input as the standard source. During analogue in the other two inputs are scanned for any valid signal. The first channel that contains any valid audio is selected and becomes the new input source. But if you put in the USB cable but you want to use the analogue input you can force the analogue input to be used. This can be done for both inputs. When the module selects one of the inputs this is shown by the active input lights. Under the Setup select part the system setup can be selected. There can be chosen between: | 2-channel | Bridged | |---------------------|---------------------| | Master on the left | Master on the left | | Master on the right | Master on the right | ^{*} The channel assignment in analogue mode makes no difference because there is only one input channel The last thing that can be controlled in this window is volume. This can be done by setting the scroll-bar to a desired position or by typing the value in the volume field, the value is send when pressed "enter". When the presets are installed they may be selected, the module will switch to the selected preset. The presets can be filled in the "Filter design" section. #### Filter design When you want to make some filters for your module they can be designed in the "Filter design". Under view there can be switched between the control panel and the filter design window. The following pages will give you a widespread instruction of the possibilities of the program. Figure 8 Figure 9 #### **Graph Area** The magnitude tab shows the imported driver responses, filters, individual biquads, individual filtered driver responses and the sum. | Colour | Function | |-------------------|-------------------------------------------| | Blue, thin | Measured woofer response | | Green, thin | Measured midrange response | | Red. thin | Measured tweeter response | | Blue, thick | Filtered woofer response | | Green, thick | Filtered midrange response | | Red, thick | Filtered tweeter response | | Light blue, thick | Response of filter, selected channel only | | Orange, thick | Response of selected biquad | | Black, thick | Sum response | Having all of these on at the same time quickly produces an intractable mess so these graphs can be separately enabled or disabled in the filter definition area. The impulse or step tabs show the time domain response of the imported drivers and the sum response, and are used to demarcate the anechoic portion. #### **Filter Definition Area** The two channel tabs, labelled Tweeter and Woofer are functionally identical. The top left frame is used to import response files. The "select" button opens a file. The "show" checkbox turns display of the measured graph on or off. The Common Settings box controls global gain (for each channel), delay, and the visibility of plots. The amplified channels have up to 12 biquads, selected using the "Biquad Section" radio buttons in the middle. To the right is a settings area specific to the type of function selected. Unused biquads are set to unity. The selected biquad is edited by selecting a function and setting relevant parameters. #### **Settings Window** | Settings | × | |--------------------------------|--------| | Managrament Compling Pota (Us) | Foods | | Measurement Sampling Rate (Hz) | r | | Processor Sampling Rate (Hz) | 192000 | | Graph Smoothing (octaves) | 0.125 | | Source HEX file | | | | Select | | | | | Close | | Figure 10 The settings window is under File > Settings... Measurement sampling rate sets the sample rate used in the imported response files (typically 48kHz). Processor sampling rate is that of the DSP hardware. Note that this setting does not control the sampling rate of the hardware. Rather, it informs the filter design application of what that sampling rate is. In short, leave this at 46,875kHz. The select button opens a file dialogue box witch is not used in this application. #### Work flow #### Measurement Measuring using the DSP unit set to "flat" Perform impulse response measurements for each driver separately. Save the entire impulse record – truncation can be done later on the filter design program. #### Measuring using an external amplifier A separate amplifier may also be used for measuring the drivers, provided the amplifier's output impedance is as low as the DSP unit's. #### Importing response data Select the tab for the channel you want to import and click "select". The filter designer expects the impulse response measurement as a text file with one sample per line. There is no restriction on the absolute gain of the impulse response data. The only thing that matters is that the absolute gain be the same for all three measurements. The filter designer computes a gain offset based on all loaded responses to centre them collectively on the vertical scale. ## Truncating response data Switch to the impulse or step response graph. Figure 11 The first echo is apparent at 5ms. Zoom in until you see only the anechoic portion of the impulse response. Dragging the mouse, left-button down, from left to right marks a zoom area. Dragging from right to left zooms out. Dragging with the right button down pans the plot left and right. Figure 12 Click "truncate". Anything currently outside the display is drawn in grey and not processed. You will notice that in the frequency graph a portion of the low-frequency response is also drawn in grey. This is to remind the user that insufficient information is available to make *any* correction below this frequency. A way of obtaining quasi anechoic low-frequency measurements is making close-up measurements. Working with such measurements requires a good deal of interpretation but it is doable. Important: Avoid making any corrections for which no anechoic data is available. If reflections are included, they are guaranteed to dominate the measurement at low frequencies, and you will end up making corrections for circumstances that are highly specific to the room in which the measurement was made. Power-response data can only be made in a proper echo chamber or preferably, by collating a large number of anechoic off-axis measurements. A reverberant measurement in a normal live room just won't do. The steps of loading and truncating data can be repeated at any time. This can be particularly practical when combining close-up and far-field measurements during the filter design phase. The window in Figure 12 shows the result of this. The small knot of corrections made around 70Hz is based on close-up data first loaded separately. The LF section of the test mule is quite smooth apart from one internal standing wave. #### **Designing filters** | Biquad function | Parameters | Use | |------------------|------------------------------------|-------------------------------------------| | Unity | - | Section is not used | | LPF1 | Cut-off frequency (always -3dB) | First order lowpass | | LPF2 | Cut-off frequency (asymptotically) | Second order lowpass. A Q of 0.71 corre- | | | Q | sponds to butterworth. 0.5 corresponds | | | | to LR2. Two identical sections with a Q | | LIDGA | G . (() | of 0.71 form an LR4 filter. | | HPF1 | Cut-off frequency (always -3dB) | First order highpass | | HPF2 | Cut-off frequency (asymptotically) | Second order highpass. A Q of 0.71 cor- | | | Q | responds to butterworth. 0.5 corre- | | | | sponds to LR2. Two identical sections | | | | with a Q of 0.71 form an LR4 filter. | | Shelf1 | Centre Frequency (halfway point) | First order shelf. Useful for baffle-step | | | Gain | correction | | | Direction | | | | Centre Frequency (halfway point) | Second order shelf. Useful for correcting | | Shelf2 | Gain | internal cabinet resonances and for the | | | Q | midband peak/dip combo of most mid- | | | Direction | woofer speakers. | | Asymmetric Shelf | Pole frequency and Q | Equalising the bottom end of closed-box | | | Zero frequency and Q | woofers with large magnets | | Boost/Cut | Centre frequency | Dip/peak filter. For peaks, Q is defined | | | Q | by the poles. For dips, Q is defined by | | | gain | the zeros. Thus the same filter with op- | | | | posite gains will cancel. | The first step is equalising the magnitude responses of the drivers flat over their entire useable frequency range. The weapons of choice are shelving filters, and boost/cut sections. A sharp peak followed by an equally sharp dip can be corrected using a second-order shelving filter with a high Q. Exercise care when deciding what to correct. When correcting for diffraction errors, do not exceed a Q of 3 lest the cure be worse than the ailment. Errors that are caused inside the driver, or internal cabinet resonances that emanate through the same diaphragm, may be corrected ruthlessly – provided the measurement has sufficient resolution to pin them down. As a rule of thumb, sharp dips are diffraction artefacts while sharp peaks are caused by the drivers themselves. Exceptions are room resonances (if the response is not correctly truncated) and diffractions on repetitive patterns. The second step is designing the actual crossover filters. All the usual strategies work. Delaying higher frequency drivers with respect to lower-frequency ones is a powerful alternative to using asymmetric slopes and yields substantially improved coherence through the crossover region. #### Download Under download the user can press "load DSP" to download its designed filters to the module, but only for the current used preset! ## Firmware update Every module has the ability to update its firmware, when the same for master and slave module. Under option "download" you can find "Firmware update". When this option is selected the user can select the new firmware file. This is a complete hex file provided by the user! After you selected the file you will enter the bootloader, the device will reconnect and shows version 99.99 in the status bar. Now you need to select the file again to load the new firmware into the module. After the file is selected the update begins. #### DO NOT DISCONNECT THE MODULE AT THIS POINT! When the progress bar is filled the update is completed. On a CRC error the update is automatically restarted, after three errors the update is aborted. Note that the new firmware does not have any filters installed, so the filters must be reloaded with the correct values. # Safety precautions The AKB-400DSP is supplied with a switched mode power supply. The following chapter explains the safety precautions which have to be made for these kinds of products. The AKB-400DSP operates at mains voltage and carries hazardous voltages at accessible parts. These parts may never be exposed to inadvertent touch. Observe extreme care during installation and never touch any part of the unit while it is connected to the mains. Disconnect the unit from the mains and allow all capacitors to discharge for 10 minutes before handling it. This product has no serviceable parts other than the on-board fuse. Replace the fuse only with the same type and rating (250V T5AL). All parts enclosed by the dotted line below carry hazardous voltages. This includes parts on the top and the bottom of the board. When the AKB-400DSP is mounted in a tight space there needs to be at least 6mm clearance or a layer of insulation with a minimum thickness of 0.5mm between the top of the transformer and the housing. Standard the AKB-400DSP is supplied with 10mm spacers to mount the AKB-400DSP onto the chassis. This creates the mandatory 6mm clearance from the bottom side of the PCB to the chassis without the need for additional insulating material. Figure 13 ## Instructions For Installation **Warning**: To reduce the risk of fire or electric shock, do not expose this apparatus to rain or moisture. **Warning:** Disconnect the unit from the mains and allow all capacitors to discharge for 10 minutes before handling it. **Warning:** Please follow the mounting guidelines. - 1. Do not build the module on a conductive surface. - 2. Keep at least 60mm between the module front plate and the back of the enclosure, see Figure 14. - 3. Do not lead any single insulated speaker-cable below the indicated line in Figure 14. With double insulated cable you are allowed to lead the cables below this line. Figure 14 This symbol indicates the presence of hazardous voltages at accessible conductive terminals on the board. Parts that are not highlighted in red (picture above) may carry voltages in excess of 140VDC! - 1. Read these instructions. - **2.** Keep these instructions. - 3. Heed all warnings. - 4. Follow all instructions. - **5.** Do not use this apparatus near water. - **6.** Protect the power cord from being walked on or pinched particularly at plugs, convenience receptacles, and the point where they exit from the application. - **7.** Only use attachments/accessories specified or approved by the manufacturer. - **8.** Unplug this apparatus during lightning storms or when unused for long periods of time. - **9.** Refer all servicing to qualified service personnel. Servicing is required when the apparatus has been damaged in any way, liquid has been spilled or objects have fallen into the apparatus, the apparatus has been exposed to rain or moisture, does not operate normally or has been dropped. - **10.** Don't run any cables across the top or the bottom of the AKB-400DSP Apply fixtures to cables to ensure that this is not compromised. - **11.** Observe a minimum distance of 6mm maintain clearance with all possible conducting parts (housing etc.). All parts enclosed by the dotted line below carry hazardous voltages. This includes parts on the top and the bottom of the board. - **12.** Natural convection should not be impeded by covering the AKB-400DSP (apart from the end applications housing). ## Recommended Operating Conditions for the AKB-400DSP | Item | Symbol | Min | Тур | Max | Unit | Notes | |-------------------------|-------------------|-----|-----|-----|------|-------| | High Line Input Voltage | V _B | 180 | 230 | 264 | Vac | | | Low Line Input Voltage | V _{B FP} | 90 | 115 | 132 | Vac | | | Line Input Frequency | f | 47 | | 63 | Hz | | #### General Performance data for the AKB-400DSP | Item | Symbol | Min | Тур | Max | Unit | Notes | |---------------------------------------------------|-------------------|-----|-----|-----|------|------------| | Max Output Power | P _R | 600 | - | - | W | See Note 1 | | Max Audio Output Power @ 20Hz into amplifier load | P _{RALF} | 400 | - | - | W | See Note 2 | | Switching frequency | F _{sw} | 80 | 100 | 120 | kHz | | | Maximum power consumption | P _{max} | | | 800 | W | See Note 3 | **Not**e 1: Output Power delivered to a resistive dummy load (generally the only specification supplied by other AKB-400DSP manufacturers). **Note 2**: An audio amplifier actually draws twice the RMS power from the power supply. At high frequencies the secondary storage output caps are capable to provide this power. At very low frequencies however the AKB-400DSP is responsible for delivering this peak power to the amplifier. Note 3: Limited by over current protection. ## Mains selection The AKB-400DSP is factory set to operate at a mains voltage of 230Volt. The user is able to change this setting to 115Volt. Instructions must be followed! Before changing the mains settings disconnect the unit from the mains and allow all capacitors to discharge for 10 minutes before handling it. Update the front plate with the updated information by checking the 115V or 230V setting. J1: Mains Voltage Input Selection. Connector type: JST-B2P-VH | Pin | Function | |-----|--------------------------------------------------------| | 1,2 | Not Connected = 230Vac Mains; Connected = 115Vac Mains | Figure 15 # **Technical** data Supply voltage Dimensions Plate thickness Weight Clearance 230Volt AC/50Hz +/- 10% (switch able to 115Volt 60Hz) 142mmx330mmx55mm (WxHxD) 2,5mm 1,1 kg >9,5mm Figure 16: Plate amp 2xUcD400Watt | Revision | PCB Version | Description | Date | |----------|-------------|---------------------------------------------------------------------------------------------|------------| | R0 | V0.1 | - Initial Draft. | 21-04-2009 | | R1 | V0.2 | - Hard- and software part added | 06-10-2009 | | R2 | V1 | - Pinout description added
- Clip limiter added | 23-06-2010 | | R3 | V1 | - Safety instructions added
- Installation instructions added
- Mains selection added | 29-06-2010 | | R4 | V2 | - Explain button functions on digital version added
- Temperature protection added | 18-11-2010 | | R5 | V3 | - High channel gain change added | 12-07-2011 |